COMPOUNDS PRODUCED BY 𝘊𝘭𝘰𝘯𝘰𝘴𝘵𝘢𝘤𝘩𝘺𝘴 𝘳𝘰𝘴𝘦𝘢 DELETERIOUS TO 𝘉𝘰𝘵𝘳𝘺𝘵𝘪𝘴 𝘤𝘪𝘯𝘦𝘳𝘦𝘢

Rodrigo Moreira Saraiva, Álefe Vitorino Borges, Filipe Constantino Borel, Luiz Antonio Maffia


Clonostachys rosea is an antagonist to Botrytis cinerea, the causal agent of gray mold. It is known that C. rosea produces enzymes and secondary metabolism compounds deleterious to some pathogens, but its effect against B. cinerea has not been elucidated. In this paper, the activity of the compounds of C. rosea antagonistic to B. cinerea was assessed. We found that C. rosea does not produce volatile compounds that affect the pathogen. Compound(s) produced by the antagonist in culture medium inhibited the germination of conidia and the activities of sclerotia and mycelia. The effect was considered fungistatic because the activities of sclerotia and mycelia were resumed after placed in PDA medium without the compound(s). When the C. rosea culture filtrate was applied to tomato stem segments at different times, the size of the lesion caused by the pathogen reduced. The control efficiency was higher than 90% when the filtrate was applied either one day before or at the time of B. cinerea inoculation. In plants, the lesion length decreased by 50% when the filtrate was applied one day before the inoculation of the pathogen. According to the data, C. rosea isolates act by producing organic compound(s) that are deleterious, most likely through fungistasis, to B. cinerea.

Texto completo:

PDF (English)


BORGES, A. V.; SARAIVA, R. M.; MAFFIA, L. A., 2014. Key factors to inoculate Botrytis cinerea in tomato plants. Summa Phytopathologica, v.40, p.221-225,

BORGES, A.V.; SARAIVA, R. M.; MAFFIA, L. A. 2015. Biocontrol of gray mold in tomato plants by Clonostachys rosea. Tropical Plant Pathology, v.40, p.71-76,

BRAKHAGE, A. A.; SCHROECKH, V. 2011. Fungal secondary metabolites – strategies to activate silent gene clusters. Fungal Genetics and Biology, v.48, p.15-22,

CHIANG, Y. M.; CHANG, S. L.; OAKLEY, B.R.; WANG, C. C. 2011. Recent advances in awakening silent biosynthetic gene cluster and linking orphan clusters to natural products in microorganisms. Current Opinion in Chemical Biology, v.15, p.137-143,

COTA, L. V.; MAFFIA, L. A; MIZUBUTI, E. S. G.; MACEDO, P. E. F.; ANTUNES, R. F., 2008. Biological control of strawberry gray mold by Clonostachys rosea under field conditions. Biological Control, v.46, p.515-522,

DANIEL, J. F.; RODRIGUES FILHO, E. 2007. Peptaibols of Trichoderma. Natural Product Reports, v.24, p.1128-1141,

FATEMA, U.; BROBERG, A.; JENSEN, D. F.; KARLSON, M.; DUBEY, M. 2018. Functional analysis of polyketide synthase genes in the biocontrol fungus Clonostachys rosea. Scientific Reports, v.8, p.15009, 0.1038/s41598-018-33391-1

KARLSON, M.; DURLING, M. B.; CHOI, J.; et al., 2015. Insights on the evolution of mycoparasitism from the genome of Clonostachys rosea. Genome Biology and Evolution 7:465-80, 10.1093/gbe/evu292

LAHOZ, E.; CONTILLO, R.; PORRONE, F. 2004. Induction of systemic resistance to Erysiphe orontii cast in tobacco by application on roots of an isolate of Gliocladium roseum Bainier. Journal of Phytopathology, v.152, p.465-470, 10.1111/j.1439-0434.2004.00876.x

LI, G. Q.; HUANG, H. C.; KOKKO, E. G.; ACHARYA, S. N., 2002. Ultrastructural study of mycoparasitism of Gliocladium roseum on Botrytis cinerea. Botanical Bulletin of Academia Sinica, v. 43, p.211-218,

LI, J.; YANG, J. K.; HUANG, X. W.; ZHANG, K. Q. 2006. Purification and characterization of an extracellular serine protease from Clonostachys rosea and its potential as a pathogenic factor. Process Biochemistry, v.41, p.925-929,

MAMARABADI, M.; JENSEN, D. F.; LUBECK, M. 2009. An N-acetyl-b-D-glucosaminidase gene, cr-nag1, from the biocontrol agent Clonostachys rosea is up-regulated in antagonistic interactions with Fusarium culmorum. Mycological Research, v.113, p.33-43,

MORANDI, M. A. B.; MAFFIA, L. A.; MIZUBUTI, E. S. G.; ALFENAS, A. C.; BARBOSA, J. G. 2003. Suppression of Botrytis cinerea sporulation by Clonostachys rosea on rose debris: a valuable component in Botrytis blight management in commercial greenhouses. Biological Control, v.26, p.311–317,

MORANDI, M. A. B.; MAFFIA, L. A.; SUTTON, J. C., 2001. Development of Clonostachys rosea and interactions with Botrytis cinerea in rose leaves and residues. Phytoparasitica, v.29, p.1-11,

MORANDI, M. A. B.; MATTOS, L. P. V.; SANTOS, E. R.; BONUGLI, R. C. 2008. Influence of application time on the establishment, survival, and ability of Clonostachys rosea to suppress Botrytis cinerea sporulation on rose debris. Crop Protection, v.27, p.77-83,

MUKHERJEE, P. K.; HORWITZ, B. A.; KENERLEY, C. M. 2011. Secondary metabolism in Trichoderma - a genomic perspective. Microbiology-SGM, v.158, p.35-45,

MOUEKOUBA, L. D. O.; ZHANG, L.; GUAN, X.; CHEN, X.; CHEN, H.; ZHANG, J.; ZHANG, J.; LI, J.; YANG, Y.; WANG, A. 2014. Analysis of Clonostachys rosea-induced resistance to tomato gray mold disease in tomato leaves. Plos One, v.7, p.e102690,

NOBRE, S. A. M.; MAFFIA, L. A.; MIZUBUTI, E. S. G.; COTA, L. V.; DIAS, A. P. S., 2005. Selection of Clonostachys rosea isolates from Brazilian ecosystems effective in controlling Botrytis cinerea. Biological Control, v.34, p.132-143,

O’BRIEN, J.; WRIGHT, G. D. 2011. An ecological perspective of microbial secondary metabolism. Current Opinion in Biotechnology, v.22, p.552-558,

O'NEILL, T. M.; SHTIENBERG, D.; ELAD, Y., 1997. Effect of some host and microclimate factors on infection of tomato stems by Botrytis cinerea. Plant Disease, v.81, p.36-40,

PACHENARI, A.; DIX, N. J. 1980. Production of toxins and wall degrading enzymes by Gliocladium roseum. Transactions of the British Mycological Society, v.74, p.561-566,

PENG, G.; SUTTON, J. C. 1991. Evaluation of microorganisms for biocontrol of Botrytis cinerea in strawberry. Canadian Journal of Plant Pathology, v.13, p.247-257,

ROBERTI, R.; VERONESI, A.; CESARI, A.; CASCONE, A.; DI BERARDINO, I.; BERTINI, L.; CARUSO, C. 2008. Induction of PR proteins and resistance by the biocontrol agent Clonostachys rosea in wheat plants infected with Fusarium culmorum. Plant Science, v.175, p.339-347,

RODRÍGUEZ, M. A.; CABRERA, G.; GOZZO, F. C.; EBERLIN, M. N.; GODEAS, A. 2011. Clonostachys rosea BAFC3874 as a Sclerotinia sclerotiorum antagonist: mechanisms involved and potential as a biocontrol agent. Journal of Applied Microbiology, v.110, p.1177-1186,

SUTTON, J. C.; LI, D. W.; PENG, G.; YU, H.; ZHANG, P.; VALDEBENITO-SANHUENZA, R. M., 1997 Gliocladium roseum: A versatile adversary of Botrytis cinerea in crops. Plant Disease, v.81, p.316-328,

SUTTON, J. C.; LIU, W.; HUANG, R.; OWEN-GOING, N., 2002. Ability of Clonostachys rosea to establish and suppress sporulation potential of Botrytis cinerea in deleafed stems of hydroponic greenhouse tomatoes. Biocontrol Science and Technology, v.12, p.413-425,

THINES, E.; EILBERT, F.; ANKE, H.; STERNER, O. 1998. Glisoprenis C; D and E; new inhibitors of appressorium formation in Magnaporthe grisea, from cultures of Gliocladium roseum. Production and biological activities. Journal of Antibiotics, v.51, p.117-22,

VEY, A.; HOAG, I. R. E.; BUT, T. M. 2001. Toxic metabolites of fungal biocontrol agents. In: BUT, T. M.; JACKSON, C.; MAGAN, N. (Eds) Fungi as biocontrol agents: progress, problems and potential. USA, CaB International Publishing, 311p.

VITERBO, A.; WIEST, A.; BROTMAN, Y.; CHET, I.; KENERLEY, C. 2007. The 18mer peptaibols from Trichoderma virens elicit plant defence responses. Molecular Plant Pathology, v.8, p.737-746,



  • Não há apontamentos.