Nádia Cristina Viana, Daniela Defavari do Nascimento, Marcos Prada, Sandra Helena da Cruz


The Brazilian fermentation process has unique characteristics, such as the utilization of acid yeast cell recycling. The difficulty to sterilize large volumes of water and sugarcane juice enables the presence of indigenous yeasts. Occasionally, those yeast strains are better adapted and exert dominance over the commercial strains employed in the fermentation process. This study explored the prevalence of indigenous yeast strains in an ethanol producing unit in Brazil. The samples, ranging from beginning to late stages of the harvest season, show the presence of indigenous yeast. This can be observed by the divergence in PCR banding patterns from the samples, when compared to the commercial yeast strain PE-2 utilized by this particular ethanol producing unit. The results obtained point to the dominance of indigenous yeasts in the fermentation system that surpass in occurrence the commercial strain in all stages of the harvest season.

Texto completo:

PDF (English)


AMORIM, H. V.; LOPES, M. L.; DE CASTRO OLIVEIRA; J. V., BUCKERIDGE, M. S.; & GOLDMAN, G. H., 2011. Scientific challenges of bioethanol production in Brazil. Applied Microbiology and Biotechnology, Berlin, v. 91, p. 1267–1275.

BASSO, L. C.; DE AMORIM, H. V.; DE OLIVEIRA, A. J.; & LOPES, M. L., 2008. Yeast selection for fuel ethanol production in Brazil. FEMS Yeast Research, Amsterdam, v.8, n.7, p. 1155–1163.

BEATO, F. B.; BERGDAHL, B.. ROSA, C. A.; FORSTER, J.; & GOMBERT, A. K., 2016. Physiology of Saccharomyces cerevisiae strains isolated from Brazilian biomes: new insights into biodiversity and industrial applications. FEMS Yeast Research, Amsterdam, v.16, n.7,

BONATELLI, M. L.; IENCZAK, J. L.; & LABATE, C. A., 2019. Sugarcane must fed-batch fermentation by Saccharomyces cerevisiae: impact of sterilized and non-sterilized sugarcane must. Antonie van Leeuwenhoek, Amsterdam, v.1, n.11.

CARVALHO-NETTO, O. V.; CARAZZOLLE, M. F.; RODRIGUES, A.; BRAGANÇA, W. O.; COSTA, G. G. L.; ARGUESO, J. L.; & PEREIRA, G. A. G., 2013. A simple and effective set of PCR-based molecular markers for the monitoring of the Saccharomyces cerevisiae cell population during bioethanol fermentation. Journal of Biotechnology, Amsterdam, n.168, n.4, p.701–709.

CASTILLO, J. A. V.; LAGUADO, J. A.; LÓPEZ, J.; & GIL, N. J., 2016. New sources and methods to isolate vinasse-tolerant wild yeasts efficient in ethanol production. Annals of Microbiology, London, n.66, n.1, p.187–195.

DELLA-BIANCA, B. E.; & GOMBERT, A. K., 2013. Stress tolerance and growth physiology of yeast strains from the Brazilian fuel ethanol industry. Antonie van Leeuwenhoek, Amsterdam, n.104, n.6, p.1083–1095.

LAUTERBACH, A.; WILDE, C.; BERTRAND, D.; BEHR, J.; VOGEL, R.F., 2018. Rating of the industrial application potential of yeast strains by molecular characterization. European Food Research and Technology, Berlin, v.244, p.1759-1772.

LOPES, M.L.; PAULLILO, S.C.dL.; GODOY, A.; CHERUBIN, R.A.; LORENZI, M.S.; GIOMETTI, F.H.C.; BERNARDINO, C.D.; AMORIM NETO, H.B.; AMORIM, HV., 2018. Ethanol production in Brazil: a brigde between science and industry. Brazilian Journal of Microbiology, São Paulo, v.47, p.64-76.

MĄCZYŃSKA, J.; KRZYWONOS, M.; KUPCZYK, A.; TUCKI, K.; SIKORA, M.; PIŃKOWSKA, H.; WIELEWSKA, I., 2019. Production and use of biofuels for transport in Poland and Brazil – The case of bioethanol. Fuel, Amsterdam, n.241, p.989–996.

VIANA, N.; PORTUGAL, C. B., & CRUZ, S. H., 2017. Morphophysiological and molecular characterization of wild yeast isolates from industrial ethanol process. African Journal of Microbiology Research, Nairobi, v.11, n.37, p.1422–1430.

REIS, V. R.; BASSI, A. P. G.. CERRI, B. C.; ALMEIDA, A. R.; CARVALHO, I. G. B.; BASTOS, R. G.;& CECCATO-ANTONINI, S. R., 2018. Effects of feedstock and co-culture of Lactobacillus fermentum and wild Saccharomyces cerevisiae strain during fuel ethanol fermentation by the industrial yeast strain PE-2. AMB Express, Wien, n.8, n.1, p.23.

REIS, V. R.; BASSI, A. P. G.; SILVA, J. C. G. DA; & CECCATO-ANTONINI, S. R., 2013. Characteristics of Saccharomyces cerevisiae yeasts exhibiting rough colonies and pseudohyphal morphology with respect to alcoholic fermentation. Brazilian Journal of Microbiology, São Paulo, v.44, n.4, p.1121–1131.

RUYTERS, S.; MUKHERJEE, V.; VERSTREPEN, K. J.; THEVELEIN, J. M.; WILLEMS, K. A.; & LIEVENS, B., 2015. Assessing the potential of wild yeasts for bioethanol production. Journal of Industrial Microbiology & Biotechnology, Houndmills, v.42, n.1, p.39–48.

SANNINO, C.; MEZZASOMA, A.; BUZZINI, P.; TURCHETTI, B., 2019. Non-conventional Yeasts for Producing Alternative Beers. Basic Research to Application, Springer, Cham, p.361-388.

STEENSELS, J.; & VERSTREPEN, K. J., 2014. Taming Wild Yeast: Potential of Conventional and Nonconventional Yeasts in Industrial Fermentations. Annual Review of Microbiology, Palo Alto, v.68, n.1, p.61–80.

SOUZA, J.P.; PRADO, C.D.; ELEUTHERIO, E.C.A.; BONATTO, D.; MALAVAZI, I.; CUNHA, A.F., 2018. Improvement of Brazilian ethanol production – Challenges and perspectives on the identification and genetic modification of new strains of Saccharomyces cerevisiae yeasts isolated during ethanol process. Fungal Biology, Amsterdam, v.122, p.583-591.

TEODORESCU, R.I.; BARBULESCO, D.I.; TUDOR, V.; MARIN, S.M., DUMITRACHE, C.; FRINCU, M.; DIGUTA, C.F.; MATEI, F., 2019. Molecular characterisation of new yeast strains isolated from grape marc in Pietroasa Winemaking Centre, Romania. Journal of Biotechnology, Amsterdam, v.305, Supplement, p. S53.

XUFRE, A.; ALBERGARIA, H.; GÍRIO, F.; & SPENCER-MARTINS, I., 2011. Use of interdelta polymorphisms of Saccharomyces cerevisiae strains to monitor population evolution during wine fermentation. Journal of Industrial Microbiology and Biotechnology, Houndmills, v.38, n.1, p.127–132.