PHOSPHATE SOLUBILIZATION CAPACITY AND INDOLE ACETIC ACID PRODUCTION BY Trichoderma STRAINS FOR BIOMASS INCREASE ON BASIL AND MINT PLANTS

Authors

  • Lillian França Borges Chagas Universidade Federal do Tocantins
  • Aloisio Freitas Chagas Junior Universidade Federal do Tocantins
  • Henrique Guilhon de Castro Universidade Federal do Tocantins

DOI:

https://doi.org/10.37856/bja.v92i2.3221

Abstract

The use of microorganisms in medicinal plants may provide an increase in biomass. The objective of this work was to evaluate the efficiency and capacity of Trichoderma strains to solubilize phosphate and to synthesize indole acetic acid (IAA) in vitro in the biomass production of two medicinal plants, basil and mint. Cultures were inoculated with two species of Trichoderma. The crop biomass as well as the relative efficiency were determined. Trichoderma species that solubilized phosphate and produced IAA, provided significant results in the accumulation of biomass of the crops, with relative efficiency of 276% for mint and 141% for basil, in relation to the control. The Trichoderma isolates showed phosphate solubilization capacity and IAA synthesis. Therefore, the studied crops presented biomass increase. These strains verified their capacity as plant growth promoters.

Author Biographies

Lillian França Borges Chagas, Universidade Federal do Tocantins

Microbiologia, Produção Vegetal

Aloisio Freitas Chagas Junior, Universidade Federal do Tocantins

Microbiologia, Produção Vegetal, Biotecnologia

Henrique Guilhon de Castro, Universidade Federal do Tocantins

Produção Vegetal, Plantas Medicinais

References

ASUMING-BREMPONG, S. 2013. Phosphate solubilizing microorganisms and their ability to influence yield of rice. Agricultural Science Research Journal, v.3, n 12, p.379-386.

BARROSO, C.B.; PEREIRA, T.G.; NAHAS, E. 2013. Solubilization of CaHPO4 and AlPO4 by Aspergillus niger in culture media with diferente carbono and nitrogen sources. Brazilian Journal Microbiology, São Paulo, v.37, p.434-438.

BENÃTEZ, T.; RINCÓN, A.M.; LIMÓN, M.C.; CODÓN, A.C. 2004. Biocontrol mechanisms of Trichoderma Strains. International Microbiology, v.7, p.249-260.

CHACÓN, M.R.; RODRÃQUEZ-GALÃN, O.; BENÃTEZ, T.; SOUSA, S.; REY, M.; LLOBELL, A.; DELGADO-JARANA, J. 2007. Microscopic and transcriptome analyses of early colonization of tomato roots by Trichoderma harzianum. International Microbiology, v.10, p.19-27.

CHAGAS, L.F.B.; CHAGAS JUNIOR, A.F.; CARVALHO, M.R. de; MILLER, L. de O.; COLONIA, B.S.O. 2015. Evaluation of the phosphate solubilization potencial of Trichoderma strains (Trichoplus JCO) and effects on rice biomass. Journal of Soil Science and Plant Nutrition, v.15, n.3, p.794-804.

CONTRERAS-CORNEJO, H.A.; MACÃAS-RODRÃQUEZ, L.; CORTÉS-PENAGOS, C.; LÓPEZ-BUCIO, J. 2009. Trichoderma virens, a plant bene- ficial fungus, enhances biomass production and promotes lateral root growth through an auxin-dependent mechanism in Arabidopsis. Plant Physiology, v.149, n.3, p.1579-1592.

DIANESE, A. de C.; BLUM, L.E.B.; MELLO, S.C.M. de. 2012. Uso de Trichoderma spp. para o manejo da podridão-do-pé-do-mamoeiro causada por Phytophthora palmivora Butler. Planaltina-DF: Embrapa Cerrados, 18 p.

EMBRAPA (Empresa Brasileira de Pesquisa Agropecuária). 1997. Manual de métodos de análise de solos. 2. ed. Rio de Janeiro: Centro Nacional de Pesquisa de Solos. EMBRAPA - CNPS, 212 p.

GORDON, S.A.; WEBER, R.P. 1951. Colorimetric estimation of indole acetic acid. Plant Physiology, Rockville, v.26, n.1, p. 192-195.

GRAVEL, V.; ANTOUN, H.; TWEDDELL, R.J. 2007. Growth stimulation and fruit yield improvement of greenhouse tomato plants by inoculation with Pseudomonas putida or Trichoderma atroviride: Possible role of índole acetic acid (IAA). Soil Biology & Biochemistry, Amsterdam, v.39, n.8, p.1968-1977.

HOYOS-CARVAJAL, L.; ORDUZ, S.; BISSETT, J. 2009. Genetic and metabolic biodiversity of Trichoderma from Colombia and adjacent neotropic regions. Fungal Genetics and Biology, v.46, n.9, p.615-631.

KAPRI, A.; TEWARI, L. 2010. Phosphate solubilization potential and phosphatase activity of rhizospheric Trichoderma spp. Brazilian Journal of Microbiology, São Paulo, v.41, n.3, p.787-795.

MACHADO, D.F.M.; PARZIANELLO, F.R.; SILVA, A.C.F. da; ANTONIOLLI, Z.I. 2012. Trichoderma no Brasil: O fungo e o bioagente. Revista de Ciências Agrárias, v.35, n.1, p.274-288.

MACHADO, D.F.M.; TAVARES, A.P.; LOPES, S.J.; SILVA, A.C.F. da. 2015. Trichoderma spp. na emergência e crescimento de mudas de cambará (Gochnatia polymorpha (Less.) Cabrera). Revista Ãrvore, Viçosa-MG, v.39, n.1, p.167-176.

MURPHY, J.; RILEY, J.P. 1962. A modified single solution method for determination of phosphate in natural waters. Analytical Chemistry Acta, Amsterdam, v.27, p.31-36.

NAUTIYAL, C.S. 1999. An efficient microbiological growth medium for screening phosphorus solubilizing microorganisms. FEMS Microbiology Letters, Malden, v.170, n.1, p.265-270.

OLIVEIRA, A.G.; CHAGAS JUNIOR, A.F.; SANTOS, G.R. dos; MILLER, L.O.; CHAGAS, L.F.B. 2012. Potencial de solubilização de fosfato e produção de AIA por Trichoderma spp. Revista Verde de Agroecologia e Desenvolvimento Sustentável, v.7, n.3, p.149-155.

RESENDE, M. L. 2004. Inoculação de sementes de milho utilizando o Trichoderma harzianum como promotor de crescimento. Ciência e Agrotecnologia, Lavras, v.28, n.4, p.793-798.

SAMUELS, G.J.; ISMAIEL, A.; BON, M.C.; DE RESPINIS, S.; PETRINI, O. 2010. Trichoderma asperellum sensu lato consists of two cryptic species. Mycologia, v.102, n.4, p.944-966.

SANTOS, C.C.; OLIVEIRA, F.A. de; SANTOS; M.S. dos; TALAMINI; V.; FERREIRA; J.M.S.; SANTOS; F.J. dos. 2012. Influência de Trichoderma spp. sobre o crescimento micelial de Thielaviopsis paradoxa. Scientia Plena, Aracajú, v.8, n.4. p.1-5.

SILVA, V.N. da; GUZZO, S.D.; LUCON, C.M.M.; HARAKAVA, R. 2011. Promoção de crescimento e indução de resistência à antracnose por Trichoderma spp. em pepineiro. Pesquisa Agropecuária Brasileira, Brasília, v.46, n.12, p.1609-1618.

SILVA, J.C. da; TORRES, D.B.; LUSTOSA, D.C.; FILIPPI, M.C.C de; SILVA, G.B. da. 2012. Rice sheath blight biocontrol and growth promotion by Trichoderma isolates from the Amazon. Amazonian Journal of Agricultural and Environmental Sciences, v.55, n.4, p.243-250.

STAMFORD, N.P.; NAHAS, E. 2010. Microrganismos solubilizadores de minerais. In: FIGUEIREDO, M. V. B. et al. (Ed.). Biotecnologia aplicada à agricultura. Brasília, DF: Embrapa Informação Tecnológica; Recife, PE: Instituto Agronômico de Pernambuco (IPA), p. 561-581.

VASSILEV, N.; MEDINA, A.; AZCON, R.; VASSILEVA, M. 2006. Microbial solubilization of rock phosphate on media containing agro-industrial wastes and effect of the resulting products on

Downloads

Published

2017-08-08

Issue

Section

Artigos